Sustained Investment in Software

Manish Parashar
Office of Cyberinfrastructure,
National Science Foundation
http://www.nsf.gov/oci
Science is Revolutionized by CI

- Modern science
 - Data- and compute-intensive
 - Integrative

- Multiscale Collaborations for Complexity
 - Individuals, groups, teams, communities
 - Great challenges of 21st century

- Must Transition NSF CI to support
What is needed?

CF21: NSF-wide CI Framework for 21st Century Discovery

- Comprehensive, *balanced, integrated*, national high performance CI
- Support for a broad vision of cyber-science
 - All components needed for 21st century science
 - People who use/develop CI: Cyber-workforce development
- Architect carefully, collectively across all NSF
 - Dear Colleague Letter by all NSF units in December 2009
 - Six national Task Forces underway to inform
 - All NSF offices represented
 - HEC, Campus Bridging, Software, LWD, Data, “GCC/VO”
 - New NSF-wide programs being developed; Campus-to-MREFC integration
Cyberinfrastructure Framework 21st Century Science and Engineering (CF21):

New Paradigms & Practices

• Transformed by CI
 • End-to-end
 • Fundamentally collaborative & data-driven
 • Software is an integral part
• Unprecedented opportunities
• New requirements, challenges
• New thinking in/approaches to computation science!
OCI Special Role in CF21

- Driver for integrative CI activity via CF21
 - Working with all units, community to develop the vision and implementation plan

- Catalyst for *coordinated, linked* investments in
 - CI in all forms: campus, centers, MREFC
 - Leadership in prototypes, pilots and early deployment; establishing best practices
 - People: supporting next generation of researchers
 - Cyber-science: applications of CI to enable science, leading to new science and collaborations

- Coordinator of NSF ACCI Task Force Activity
 - Advisory Committee on CI (ACCI) has members representing all NSF units
Software is Critical

- CI – Unprecedented complexity, challenges

- Software is essential to every aspect of CI – “the glue”
 - Drivers, middleware, runtime, programming systems/tools, applications, ...

- This software is different ?
 - In its natures, who builds it, how is it built, where it runs, its lifetime, etc.

- Software crisis?
 - Software complexity is impeding the use of CI
 - Science apps have 10^3 to 10^{6+} lines, have bugs
 - Developed over decades – long lifecycles (~35 years)
 - Software/systems design/engineering issues
 - Emergent rather than by design
 - Quality of science in question
Approaches to SW

- Funding for software development fails to support needs of the full life cycle
- Current models typically ad-hoc
 - Software as a byproduct
 - Scientific competence ≠ Software competence
 - Software in the small (prototyping, proof of concept)
 - Software in “isolation” – reinvention is common
- Some successes + many not very good
 - Unpredictable, unreliable
 - Expensive & requiring unrealistic skill base
 - Support, scaling, maintenance, porting
- No overarching vision, no coordination lost investments!!!
Software Grand Challenge

- **SW as the modality for CF21 and Computational Science in the 21st Century**
- **Sustainable SW as a CI resource**
 - What SW to sustain?
 - How to sustain it?
- **Fundamental Grand Challenge: Robust, Sustainable and Manageable Software at CI-Scale**
 - Repeatability, Reliability, Performance, Usability, Energy efficiency,
- **Sustainability, manageability, etc., are NOT add-ons – it has to be integrated into the design**
Many complex aspects....

- **Building the right software** – application involvement, understanding requirements
 - scales, types of software, target user communities

- **Building software right** – teams, reward structures, processes, metrics, verification/testing

- **Protecting investments** – active management, sustainability, leverage/reuse, ownership, business models

- **Building trust** – user community must be able to depend on the availability of a robust and reliable software infrastructure!
Sustained Long-Term Investment in Software

- Transform innovations into sustainable software that is an integral part of a comprehensive cyberinfrastructure
 - robust, efficient, resilient, repeatable, manageable, sustainable, community-based, etc.

- Catalyze and nurture multidisciplinary software as a symbiotic “process” with ongoing evolution
 - Domain and computational scientists, software technologists

- Address all aspects, layers and phases of software
 - Systematic approaches
 - Theory validated by empirical trials
 - Tools that embody and support processes
 - Metrics, validation mechanisms, governance structures
 - Amortised over large (global) user communities
 - Support for maintenance and user support
Sustained Long-Term Investment in Software: Mechanisms

- Create a software ecosystem that scales from individual or small groups of software innovators to large hubs of software excellence

Focus on innovation Focus on sustainability
Sensor Nets

Experiments/Instruments

Data Archives (DataNet)

Scientific Software Innovation Institutes (S2I2)

Visualization/Analytics

Infrastructure (XD)
Sustained Long-Term Investment in Software: Misc Issues

- Scale and complexity beyond community experience
 - Many unknowns: models, modes, scales,
 - domain, community specific aspects...
 - crosscutting aspects and many links...
- Must be grown bottom up in a coordinated way
 - smaller group evolving into community wide teams and institutes
- Must leverage existing investments, expertise
- Collaborations across communities, disciplines and directorates critical
Sustained Long-Term Investment in Software: Metrics of Success (Beyond LOC)

- Buy-in from the broader community
- Demonstrated leverage and reuse
- Emergence of successful models, processes, architectures, metrics for S&E software – empirically validated
- Emergence of models and mechanisms for community sustainability of software institutes
- Accepted research agenda by academic community
Summary

- Science is being revolutionized through CI
 - Compute, data, networking advance suddenly 9-12 orders of magnitude after 4 centuries
 - All forms of CI—integrated—needed for complex science

- NSF responsive: developing much more comprehensive, integrated CF21 initiative
 - Community deeply engaged in planning
 - Activities begin FY10, ramp up FY11-12 and beyond

- Focus on sustainability, people, innovation
 - Longer term programs, better linked, hubs of innovation
 - Support development of computational scientists who develop and/or use advanced CI

- Robust, reliable, sustainable software is critical!
Thank You!

Sustainable System
“meets the needs of the present without compromising the
ability of future generations to meet their own needs”
[UN Brundtland Report 1987, of sustainable development]
More Information

- Manish Parashar
 mparasha@nsf.gov
 www.nsf.gov/oci