Sustainable Software

Reagan W. Moore
Arcot Rajasekar
Mike Wan
{moore,sekar,mwan}@diceresearch.org
http://irods.diceresearch.org

Sponsored by the executive office of the president national coordination office for networking and information technology research and development and by NARA
Data Life Cycle

Each data life cycle stage re-purposes the original collection

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Collection</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td></td>
</tr>
<tr>
<td>Local Policy</td>
<td></td>
</tr>
<tr>
<td>Data Grid</td>
<td></td>
</tr>
<tr>
<td>Shared</td>
<td></td>
</tr>
<tr>
<td>Distribution Policy</td>
<td></td>
</tr>
<tr>
<td>Data Processing Pipeline</td>
<td></td>
</tr>
<tr>
<td>Analyzed</td>
<td></td>
</tr>
<tr>
<td>Service Policy</td>
<td></td>
</tr>
<tr>
<td>Data Grid</td>
<td></td>
</tr>
<tr>
<td>Distributed Library</td>
<td></td>
</tr>
<tr>
<td>Published</td>
<td></td>
</tr>
<tr>
<td>Description Policy</td>
<td></td>
</tr>
<tr>
<td>Reference Collection</td>
<td></td>
</tr>
<tr>
<td>Preserved</td>
<td></td>
</tr>
<tr>
<td>Representation Policy</td>
<td></td>
</tr>
<tr>
<td>Federation</td>
<td></td>
</tr>
<tr>
<td>Sustained</td>
<td></td>
</tr>
<tr>
<td>Re-purposing Policy</td>
<td></td>
</tr>
</tbody>
</table>

Stages correspond to addition of new policies for a broader community

Virtualize the stages of the data life cycle through policy evolution
Map from the actions requested by the access method to a standard set of micro-services.

The standard microservices are mapped to standard operations.

The standard operations are mapped to the protocol supported by the storage system.
iRODS Distributed Data Management
Sustainable Software

• Bugzilla
 – Bug fixes are highest priority
 – Access to SVN and new features in development
• Discussion list
 – Community support for problem resolution
• International development
 – Expertise also resides outside development team
• Rapid Prototyping
 – Generate new releases with new feature requests
• Production evaluation
 – Feedback on robustness, performance, features
 – Iterate
What is your recommendation for how much of the Track1 and Track 2 money should be spent on software development by award winners, by others, and why?

- **Storage Resource Broker middleware development costs**
 - 300,000 lines of code
 - Six year development / ten year deployment
 - 10-15 professional software engineers

- **Total cost ~ $15,000,000**
 - $17 / line for design, development, testing, documentation, bug fixes
 - $14 / line for interoperability (clients)
 - $12 / line for application use support
 - $7 / line for management / administration
 - Total cost ~ $50 / line

- **Development funded by:**
 - NSF / NARA / DARPA / DoE / NASA / NIH / IMLS / NHPRC / LoC / DoD
 - More than 20 funded projects to sustain development
 - International collaborations on use, development, bug fixes, support
What evaluation criteria should be put in place for software development and maintenance? Consider properties that software needs for sustainability:

• **Strongly believe in generic infrastructure that supports all data management applications**
 – Identify generic properties required by all applications
 – Identify generic mechanisms to enable each community to tune the software

• **Strongly believe in highly extensible infrastructure**
 – Focus on framework for interoperability with legacy systems, new clients

• **Requires input from as many communities as possible on usage models, aggregated over 10-years of user input**
 – Science and engineering disciplines
 – Digital library community
 – Preservation community
 – Data processing pipelines

• **Requires validation of the technology in production use across communities**
 – Feedback on performance, robustness, bug fixes, new extensions
 – Implies rapid prototyping, iterative development cycle to track evolving requirements
Is there a (virtual) payment system that would allow other NSF awardees to indicate their desire for continued support of well-utilized software that they depend upon but do not develop themselves?

- **Collaboration software models:**
 - Explicit collaborations with multiple communities to prove software can be tuned to support community specific feature development
 - Multiple funding sources to ensure requirements gathered from all user communities

- **Peer models**
 - Usage statistics on communities successfully using technology
 - Migration of technology into commercial products

- **Standards models:**
 - Migration of technology specifications into commercial standards
 - Migration of middleware into disk controllers

- **Federation models:**
 - Creation of collaborations between disciplines that build upon common software
 - Migrate technology forward into the next project
How does standardization of software interfaces (including evaluation/funding) fit to enable interoperability among NSF funded software systems?

• Each research community has a different required architecture / protocol / interface:
 – Workflows, web services, portals, message bus, data grid

• Interoperability requires a highly extensible framework
 – Support mapping between protocols
 – Support evolution of the framework itself (policies, procedures, protocols, state information)

• Standardization is a point-in-time solution
 – Need interoperability mechanisms to enable use of the next generation protocols with last generation protocols
 – Example is virtualization of
 • Collections / trust / state information / procedures / policies