NSF Vision for Cyberinfrastructure

“National-level, integrated system of hardware, software, data resources & services... to enable new paradigms of science”

Office of CyberInfrastructure

Focus Areas

- Software
- Campus Bridging and Networking
- Data and Visualization
- High Performance Computing
 - including Clouds, Grids, etc.
- Grand Challenges and VOs
- Education/Workforce development
STCI/SDCI in a Nutshell

- Pragmatic deployable infrastructure
- Real infrastructure to support real end users
 - End users in NSF domains
 - Show a community need
 - Avoid “build it and they will come”
- To a smaller degree, applied research
 - Scalability, self healing approaches, etc.
SDCI: Software Development for Cyberinfrastructure (FY07)

- Three focus areas
 - HPC, Data, and Middleware

- Two types of proposals
 - New development
 - Show compelling case for new software development
 - Improvement and Support
 - Original software must have a track record of use and impact

Required Characteristics for SDCI Proposals

- Multiple application areas and expected usage
- Awareness/distinction among alternatives
- Project plan with proof-of-concept and metrics
- Open source
- Use of NMI Build and Test facility
- Demonstration in first 2 years
 - Check in with PO halfway through
- PI meetings written into budget
How Was SDCI Different

- Built on the history of ITR and NMI
- Emphasized production quality results
 - Build and Test
 - Open Source
- Post award management
SDCI 2007

- 127 submitted proposals requesting > $145M
- 26 awards
 - 5 HPC – All Improvements
 - 6 Data – 5 New, 1 Improvement
 - 15 Middleware – 2 New, 13 Improvement
- Over $28M in total award funding
- Included co-funding support from BIO, ENG, MPS, and EPSCoR
SDCI 2010, Briefly

- Due Feb 26, 2010; $15M in funding
- Similar in spirit to SDCI 2007
- 5 software focus areas
 - HPC (Debug, Fault Tol, Perf Tuning, Migration)
 - Data (Doc/metadata, security/protection, data transport/mgmt, data analysis and viz)
 - Network (e2e perf, nw tools, testing, co-alloc.)
 - Middleware (instr access, monitoring/mngt/test, user interfaces/accessibility, bridging)
 - CyberSecurity
- 3 themes: Sustainably, self manageability, power/energy management
Strategic Technologies for Cyberinfrastructure: STCI

- Support work leading to the development and/or demonstration of innovative cyberinfrastructure services
- Broadly defined
- Fill gaps left by other programs and solicitations
Proposals should:

- Be activities that include a demonstration of the potential impact on science or engineering research or education
- Generate outcomes not currently under development elsewhere
- Meet a clearly described cyberinfrastructure need not met elsewhere fill gaps
- Generate outcomes that will be of interest to a range of science and engineering communities
STCI

- **Successful proposals**
 - Emphasize the broad applicability of the work
 - Identify current and prospective end users
 - Include supporting material
 - workshop reports, NSB recommendations, etc
 - Explain why your proposed work cannot be funded under other current NSF programs

- **Target dates twice a year**
 - August and February, since 2007

- **Funding varies year to year**
 - Usually $4-5M

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=500066
What comes into STCI? Everything!

- Networking
- Education and Outreach
- SW library development
- Portals for science domains
- CI Training
- Middleware
- Debuggers, compilers, schedulers
- Visualization and data analysis
- Security tools
- Etc etc etc
Some Stats

- Usually about 25-30 per target date
 - However, in the last 12 months over 100
- How many get funded
 - Usually 2-3 per target date
- What kind of funding requests?
 - Very small to very large
- What gets funded
 - Before stimulus funds, average was ~$800K total over 3 years, largest was $1.2M over 4
 - Stimulus changed the game
 - Please note: All stimulus funds were spent in FY09
STCI Funded Awards

<table>
<thead>
<tr>
<th>Type</th>
<th>2007-8</th>
<th>2009 with ARRA funds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Data</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Education/Collaboration</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Middleware</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Security</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Visualization</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HPC libraries</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Totals</td>
<td>10</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>Funding</td>
<td>$8,756,114</td>
<td>$19,544,682</td>
<td>$28,300,796</td>
</tr>
</tbody>
</table>
Funded Areas 2007-2009

- Applications: 12
- Data: 6
- Education/collaboration: 3
- Infrastructure: 2
- Middleware: 1
- Security: 1
- Visualization: 2
- HPC: 2
What are the post-award requirements

- Close to nothing

HOWEVER

- All infrastructure meant to be pragmatic, strongly needed, and showing evidence of ongoing support
- Software proposals, especially, are encouraged to be sustainable
STCI 2010

- Basic concept the same
- Review criteria:
 - A clearly identified need not addressed elsewhere
 - A potential for significant impact across multiple disciplines.
 - A potential for generating outcomes of interest to a broad range of communities
 - A list of tangible success metrics
 - Explanation as to why the project is not suitable for other NSF programs
 - A demonstration of strong support from within the science and engineering community
So why are we meeting together?

- Two programs have similar goals
 - Supporting NSF end user communities
 - Building infrastructure that will last
- Moving toward production quality infrastructure
- Thinking about sustainability
What Does Sustainability Mean?

“Ability to maintain a certain process or state”

In a biological context

- Resources must be used at a rate at which they can be replenished

In a software context

- Creating software that can be used in broad contexts (reuse)
- Funding models that encourage long-term support (beyond normal NSF grants)

Note: I’m defining software VERY broadly – everything in your environment, middleware, tools, numerical libraries, application codes, etc.)
One Future:
Software As Infrastructure

- NSF should fund software sustainably the same way it does other infrastructure.
 - Same as telescopes, colliders, or shake tables
 - Line items in the directorate budgets
 - Constant or growing over time, reliably
 - Factor in “maintenance” and “replacement”
 - Eligible for programs like MRI and ARI

- Software is around even longer than hw
 - Hardware refresh ~3 years
 - Software can grow over decades
 - (what’s the right funding ratio of sw to hw in a large-scale CI project?)
However, if software is viewed as infrastructure by NSF...

- PIs must also treat it as such
 - Reliable, robust, reproducible, production-quality software
 - Reporting requirements (including uptime, usage statistics, and safety/security reporting)
 - Formal planning approach- including scheduling/estimation, requirements development, deployment plans, risk assessment, etc.
 - Teams with "professional engineering" backgrounds

- Some people think simply open source is enough – it’s not.
Open Source Software is Like a Free Puppy

- Long term costs
- Needs love and attention
- May lose charm after growing up
- Occasional clean-ups required
- Many left abandoned by their owners
- May not be quite what you think
For Sustainability to work

Fundamental Change in culture for both development groups and funders
This PI Meeting

- Not your typical PI meeting
- Exploring together what it means to provide sustainable, pragmatic software infrastructure to support real end user communities
- Thanks for coming
More Information

- Jennifer Schopf
 - jschopf@nsf.gov
 - jms@nsf.gov

Office of Cyberinfrastructure
http://www.nsf.gov/oci